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Abstract

In this paper we study the amplitude Nth-power squeezing of radiation fields in the degenerate Raman

process by using the modified effective Hamiltonian approach recently suggested by us. We found that if

the field is initially in a coherent state it will not get squeezing for any Nth-power; if the field is initially

in a squeezed vacuum, it may get Nth-power squeezing. The time evolution of the field fluctuation was

discussed. Its dependences on power-order N, mean photon number '5, and squeezing angle _ are analyzed.

1 Introduction

Squeezed states of radiation fields have been studied considerably in recent years. Besides the normal

squeezing [11it is also possible to define tligher-order squeezing. Hong and Mande1121 defined the 2Nth-order

squeezing, and Hiller5 ,[3] introduced the amplitude squared squeezing. More recently, Zhang et al [41suggested

the amplitude Nth-power squeezing(ANPS), which includes the normal squeezing and the amplituide-squared

squeezing as special cases. All these higher-order squeezing have been shown to be independent nonclas-

sical features of radiation fields [51. ANPS of radiation fields has been studied in many quantum optics
systems[4-121.

On the other hand, the degenerate Raman process(DRP) is one of the most interesting two-photon

interactions between atoms and radiation fiehls, and Ires been studied intensively[13-16]. Usually, this process

was studied by the full microscopic Hamiltonian approach(FMHA)[la-14], and the effective Hamiltonian

approach(EHA) [15]. Generally speaking, FMHA gives exact solution, but it may be too complicated to be

used in some situations. Although EHA is simpler titan FMHA, it loses a phase factor, it can not be used

to deal with the quantities involving the offdiagonal elements of the density matrix. To overcome these

shortages we trove suggested a modified effective Hamiltonian al)i)roach(MEHA)ll_].

In this paper we use MEHA to stu(ly ANPS of radiation fields in DRP.

2 The Degenerate Raman Process(DRP)

The DRP refers to the interaction between a A-type three level atoms and a single mode of a radiation

field(Fig.i).
The modified effective Hamiltonian for DRP is [17l

HMEH -= HEH + I:[S (1)

HEH = _a+a(le >< gl + lg >< el) (2)

is the effective Hamiltonian(wtlen the dettming is very large, one can eliminate the upper level adiabatically

and obtain it) and

Hs = -a+a([311!] >< g] +/J_le >< el) (3)
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is the part representing the ac Stark shift of atomic levels. 191 and _ are the Stark parameters for levels

Ig > and le >, respectively.
If the initial state for the atom-field system is

oo

{_(o)>= _ q,,ic_(o)ly,n>+ c_(o)le,n)l (4)
n----O

we can expressthe statefora latertime as

I_(t)> = _ q,,ic;'(t)l_,,_>+ _'(t)le, _)1 (5)
rl.=0

sFrom the time-dependent SchrSdinger equation we can obtain C_ (t) and C_e(t).

The reduced density matrix for the field can be expressed as

oo

p(t)= _ p,,,,,(t)ln)(n'} (6)
10.)71° -_0

/,,,,,,(t) = q,,q*,[_'(t)C_"* (t) + _'(t)_"* (t)l (7)

Supposing initially the atom is in the state Ig), i.e. C#(0) = 1, and Ce(0) = 0, and let gl = g2 = g for

simplisity, we get
p,,,e(T) = q,,q*,exl_l-i(n - n')Tlcos(n - n')T (8)

in which T = At. We see that the diagonal elements p,,,, are independent of time and just the photon

distribution function of initial field.

3 The Amplitude Nth-Power Squeezing(ANPS)

The amplitude Nth-power squeezing of a radiation field is defined in terms of the following quantities [41

1 N a+N) (9)ZdN) = _(a N + a+N), Z2(N) = _(a -

ZI(N) and Z2(N) satisfy the commutation relation and the uncertainty relation

i [o N a+Nl (10)
IZ,(N),Z_(N)] = 7' ' '

((AZ_(N))")((AZ2(N))2> >_l l([aN,a+NI){2 (11)

The field is said to be Nth-I)ower ,,zlueezed if

1 {[aN' a+N] > (i = 1, 2) (12)((ha(N))"> <

Here we introduce a parameter named squeezed degree S{(N)

S(CN)=

where C(N) and DI(N) are defined as

C(N)={[aN,a+N]),

Di(N)

C(N)
(i= 1,2) (13)

(14)Di(N) = 4{(AZ_(N))2> - ([a N, a+Nl>

Then the field is Nth-power squeezed if Di(N) < O, (Hi(N) < 0). Si(N) = -1 corresponds to 100%

squeezing. In the following section we will study ANPS in DR_o. We will consider several kinds of initial

field states.
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4 ANPS in DRP

4.1. For an Initial Coherent State

oo

_i_ei_c

- nf& i

q,_ ..c _,,._ (e-"--_= _,,e , Q'_ = n!"

pfm,(T ) c c .. •_" = Q,,Q,,,exp[-_(n- n')(T- _)]cos(n n')T

D1 (N) = 4f_N sin2( NT)sin 2[N (T - _c)]

D2(N) = 4fLgsin2(NT)cos2[N(T - _c)]

then we have

We can find

(15)

(16)

(17)

We see that in a degenerate Raman process tile field will not get Nth-power squeezing if it is initially in a
coherent state.

4.2. For an Initial Squeezed Vacuum

oo

[0sq) = _ q_n[2n), q2n = Q2,,e _n_
_t=O

' I 1

= ( 1 ¼ 1 /-_ ½ ,, [(2n).]_ (18))1

where _ is the mean photon number and _ is the squeezing angle of the initial field. Then we have

p2,,.'2n,(T) = Q2,,Q2,,,exp[-i(n - nt)(2T - _)]cos(n - n')2T

We see that only even-photon-number states can be found in a squeezed vacuum.
distribution function is

P'_,, = p'2,,,'2,_= Q'2,_Q'2,_ (20)

For N = odd = 2M - I(M = 1, 2, 3, ...) we can find

(19)

The photon-number

C(1) = 1

1

Dl(1) = 2{f_ - [fi(f_ + 1)]_cos(2T - _)cos(2T)}

D2(1) = 2{_t, + ['h(f,. + 1)]'_cos(2T - _)cos(2T)} (21)

c(3) : 3(9 L + + 2)

D1(3) = 6(_).2(5'h + 3) - 5[_(_ + i)]_cos(6T - 3_)cos(6T)}

D2(3) = (i{_2(5fi + 3) + 5[ft(_ + l)]_cos((iT - 3_)cos(6T)} (22)

We can show that [D_(2M - 1)]¢=_ = [DI(2M - 1)]_=0 can be smaller than zero, but [D_(2M - 1)]¢=_ =

[D2(2M - 1)]_=0 can not be smaller than zero. This shows that we can have squeezing in Z_(2M - 1)

components for _ = 0 and in Z2(2M - 1) components for _ = _, but we have not squeezing in Z_(2M - 1)

components for _ = _r and in Zg(2M - 1) coml)onents for_ = 0.

For N = even = 2M(M = 1,2, 3, ...) we have

C(2) = 2(2,5+ i)
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D1(2) = 2_{(3ft + 1) + ($t + 1)[3cos(4T - 2_)cos(4T) - 2cos2(2T - _)cos2(2T)]}

02(2) = 2ft{(3fi + 1) - (ft + 1)[3cos(4T - 2_)cos(4T) + 2sin2(2T - _)cos2(2T)]} (23)

C(4) = 24(10/-t 3 + 1Mr2 + 7_-t+ 1)

D1(4) = 6ft2{(35ft 2 + 30ft + 3) + ('ft + 1)2135¢_s(8T - 4_) - 6cos2(4T - 2_)cos2(4T)]}

02(4) = 6fi_{(35ft 2 + 30_ + 3) - (_ + 1)2135cos(8T - 4_) + 6sin'_(4T - 2_)cos2(4T)]} (24)

We can show that [D2(2M)]_=r = [D2(2M)]_=o can be smaller than zero, but [Dl(2M)]_=_ -- [Dl(2M)]__-o
can not be smaller than zero. This shows that we can have squeezing in Z2(2M) components for both _ = 0

and _ = It, but we can not get squeezing in ZI(2M) components tbr _ = 0 and _ = 7r.
We are also interest¢<t in the optimal squeezing.

[S(1)1,,,,, = 2{_,- ['r_(_ + 1)1_ }

[s(2)],,,_,, - ,,_ + 1

2{_(5,_ + _) - _[_(_ + 1)]_}

[s(3)l,,,,,, = 9.71(._+ 1) + 2

+ (25)
[S(4)],,,,. = 10_ _ + _5¢__ + 7_t+ 1

We see that [S(N)],,a,_ _ 0 when ft << 1, and [S(N)],,_,, _ -1 (100% squeezing) when fi >> 1.
To see the features of the field fluctuation more clearly, we have done numerical calculation and drawn

some figures(Fig.2-10). F_'om these figures we see the follows:

1. Generally, the field fluctuation oscillates periodically, and the oscillation frequency is proportional to

N(Fig.2-9).

2. For a given _, the oscillation amplitude decreases a.s N increase (Fig.2-5).

3. For a given N, the oscillation amplitude increases as ft increases, but [S(N)]m_n changes smaller as fi

increases (Fig.6-9). Sm_,, --* -1 when '_t>> l(Fig.10).

5 Conclusion

In this paper we have studied ANPS of r_uliation fields in DR_P by using MEHA. We found that if the field

is initially in a coherent state it will not get squeezing in any Nth-power; if the field is initially in a squeezed

vacuum, it may get Nth-power squeezing. The relations between the time evolution of the field fluctuation

with N, fi, and _ are discussed.
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Figiure Captions

Fig.1 Schematic diagram of tile degenerate A-type three-level atom interaction with a single-mode field.
w: frequency of field; 6: atom field detmHng.
Fig.2 Sx vs T.

Fig.3 $1 vs T.

Fig.4 $2 vs T.

Fig.5 $2 vs T.

Fig.6 $1(1) vs

Fig.7.5'2(2) vs

Fig.8 S1(3) vs

fi=0.1 a: N=I;

fi=l.0 a: N=I;

_=0.1 a: N=2;

fi=l.0 a: N=2;

T. a: fi=0.1; b:

T. a: h=0.1; b:

T. a: h=0.1; b:

Fig.9 $2(4) vs T. a: h=0.1; b:

Fig.10 [S(N)]mi,_ vs ft. a,b,c,d

b: N=3

b: N=3

b: N=4

b: N=4

'h, = 1.0; c: fi = 5.0

ft = 1.0; c: fi = 5.0

ft = 1.0; c: f_ = 5.0

ft = 1.0; c: fi = 5.0

corresl)onde to N= 1,2,3,4 espectively.
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